Introducción
Suena el despertador. Son las 6:30 de la mañana. Víctor se revuelve entre las sábanas, no quiere levantarse, el sueño le supera…pero no puede permitirlo. A las 8:30 tiene una entrevista de trabajo muy importante, puede que determinante para su futuro profesional.- ¡¡Arriba chaval!!
Víctor se levanta de la cama de un salto y va directo al baño. Una ducha rápida complementada con un afeitado apurado le dejan nuevo. Desodorante, colonia y a arreglar esa cabeza. Ayer fue día (bueno, más bien noche) de salida informal con los amigos y el peinado fue más bien alocado, pero hoy toca seriedad y hay que bajarlo como sea. Secador por aquí, peine por allá. Y listo, su peinado hacia un lado presenta una completa armonía…¿completa?
- ¡¡Aghh!! Este maldito remolino…¿va a poder conmigo?…¡¡No!!
¿Podrá conseguir nuestro amigo Víctor que su pelo esté complemente perfecto?
El teorema de la bola peluda
Pues no, no podrá. Y la razón no es genética, sino matemática. Sí, sí, matemática. Y, cómo no, os voy a explicar por qué.
Teorema: (de la bola peluda)
Sea
¿Y qué tiene que ver ésto con el caso de nuestro amigo Víctor? Muy sencillo: suponiendo que su cabeza sea la esfera
Este resultado es topológico y podemos enmarcarlo dentro de la teoría del punto fijo. Su demostración (que no incluyo al necesitar demasiados conocimientos previos) tiene que ver con la teoría de homotopía. En concreto, para quien esté interesado, se basa en el teorema de la invarianza homotópica del grado. El resultado fue propuesto por Poincaré (¡qué grande!) y demostrado posteriormente por Brouwer.
Otras aplicaciones
Un teorema tan curioso como éste no podía quedarse ahí, debía tener más aplicaciones. Y las tiene. La más interesante tiene que ver con la climatología, concretamente con el viento. Tomemos la esfera terrestre y el campo tangente que a cada punto de nuestro planeta le asocia el viento que hay en ese punto (tomando este viento como vector definido en cada punto de forma continua). El teorema de la bola peluda nos dice que en todo momento debe existir algún punto de la Tierra en la que no hay viento (el viento tangente en ese punto es cero).En sentido físico, este punto de viento cero será el ojo de un ciclón o anticiclón. Resumiendo, el teorema de la bola peluda nos asegura que debe haber en todo momento un ciclón en algún sitio (este dato está sacado de la Wikipedia inglesa).
Pero volvamos a Víctor, que ha debido quedarse hecho polvo al enterarse de que no podrá tener el pelo perfecto. ¿Podemos darle alguna solución? Yo voy a darle dos opciones que pueden ser válidas aunque igual son algo dástricas:
- Dejarse el pelo tal cual estaba al salir de la ducha.
- Raparse al cero (total, si no va a haber perfección, ¿qué más da?)
Fuente: www.gaussianos.com
No hay comentarios:
Publicar un comentario